(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 102286261 B (45) 授权公告日 2014.07.09

- (21)申请号 201110197331.5
- (22)申请日 2011.07.14
- (73) 专利权人 上海本诺电子材料有限公司 地址 200230 上海市徐汇区华泾路 1305 弄 华泾工业园 18 幢 B 座 3F
- (72) 发明人 关宁 黄健翔 黄福伟 杨菲
- (74) 专利代理机构 上海汉声知识产权代理有限 公司 31236

代理人 郭国中

(51) Int. CI.

CO9J 163/00 (2006.01)

CO9J 9/02 (2006.01)

CO9J 11/04 (2006, 01)

CO9J 11/06 (2006. 01)

H01L 33/56 (2010.01)

(56) 对比文件

CN 101302413 A, 2008. 11. 12,

WO 90/02768 A1, 1990. 03. 22,

CN 101186796 A, 2008. 05. 28,

审查员 蔡文倩

权利要求书2页 说明书8页

(54) 发明名称

LED 用氨基固化体系环氧功能化有机硅导电 胶粘剂

(57) 摘要

本发明涉及一种 LED 用氨基固化体系环氧功能化有机硅导电胶粘剂及其制备方法,该有机硅导电胶包含 10~20 重量份有机硅环氧树脂、7~20重量份有机硅固化剂、60~85 重量份银粉导电填料、0.1~0.3 重量份固化促进剂、0.3~0.7 重量份界面补强剂硅烷偶联剂。本发明的导电胶在低温下贮存时间超过6个月,室温下粘度增加25%的时间超过48h。固化后热分解温度(2%质量失重温度)>300℃,室温小片推力>5Kgf/die(2×2mm),体积电阻率≤3.0×10⁻⁴W•cm。该胶粘剂具有良好的贮存稳定性,固化后具有优异的导电性、耐热性和耐UV性。

1. 一种 LED 用氨基固化体系环氧功能化有机硅导电胶粘剂, 其特征在于, 包含具有以下重量份的组份:

有机硅环氧树脂	10~20
有机硅固化剂	7~20
银粉导电填料	60~85
固化促进剂	0.1~0.3
界面补强剂硅烷偶联剂	0.3~0.7:

所述有机硅固化剂的结构为:

$$NH_2 - CH_2 -$$

其中, $n=1 \sim 6$;或

$$NH_2$$
— CH_2 — CH_2 — Si — O — Si — CH_2 — CH_2 — NH_2
 CH_3
 CH_3

其中, $n=1 \sim 6$ 。

- 2. 根据权利要求 1 所述的 LED 用氨基固化体系环氧功能化有机硅导电胶粘剂,其特征在于,所述有机硅环氧树脂为选自下列的一种或两种以上:
 - a. 端基为脂环环氧基团的硅油,结构为:

$$O \xrightarrow{\operatorname{CH}_2-\operatorname{CH}_2} \xrightarrow{\operatorname{CH}_3} \xrightarrow{\operatorname{CH}_3} \operatorname{CH}_3 \xrightarrow{\operatorname{CH}_2} \operatorname{CH}_2 \xrightarrow{\operatorname{CH}_2} O$$

其中, $n=1\sim6$;

b. 端基为脂环环氧基团的甲基苯基硅油,结构为:

$$O \xrightarrow{CH_2-CH_2-Si} \xrightarrow{CH_3} CH_2-CH_2 \xrightarrow{CH_3} O$$

其中, $n=1 \sim 6$;

c. 端基为环氧基团的甲基硅油,结构为:

,其中,n= $1\sim6$;

d. 端基为环氧基团的甲基苯基硅油,结构为:

,其中, $n=1\sim6$ 。

- 3. 根据权利要求 1 所述 LED 用氨基固化体系环氧功能化有机硅导电胶粘剂,其特征在于,所述固化促进剂为 2- 甲基咪唑、2- 乙基 -4- 甲基咪唑、2- 苯基咪唑、1- 苄基 -2- 甲基咪唑、2- 甲基咪唑、1- 氰乙基 -2- 甲基咪唑、1- 氰乙基 -2- 苯基咪唑、1- 氰乙基 -2- 苯基咪唑、1- 氰乙基 -2- 苯基咪唑、1- 氰乙基 -2- 乙基 -4- 甲基咪唑、2, 4- 二氨基 -6[2'- 甲基咪唑 -(1'乙基)]-S- 三嗪中的一种或者多种混合物。
- 4. 根据权利要求 1 所述的 LED 用氨基固化体系环氧功能化有机硅导电胶, 其特征在于, 所述银粉导电填料为颗粒 D90 小于 50 微米的片状银粉、球状银粉、无定型银粉中的一种或者它们的混合物。
- 5. 根据权利要求 1 所述的 LED 用氨基固化体系环氧功能化有机硅导电胶粘剂,其特征在于,所述界面补强剂硅烷偶联剂为 3- 缩水甘油基丙基三甲氧基硅烷。

LED 用氨基固化体系环氧功能化有机硅导电胶粘剂

技术领域

[0001] 本发明涉及 LED 有机硅导电胶粘剂,具体地说,是一种氨基固化体系环氧功能化有机硅导电胶粘剂。

背景技术

[0002] 人类自跨人 21 世纪以来,能源形势日益严峻,而节约能源比开发新能源更经济、更环保,应放在首位。当前,照明约占世界总能耗的 20% 左右。若用能耗低、寿命长、安全、环保的光源取代低效率、高耗电量的传统光源,无疑将带来一场世界性的照明革命[杨雄发,伍川,董红,等. LED 封装用有机硅材料的研究进展. 有机硅材料,2009,23,47~50]。

[0003] 超高亮度 LED 消耗的电能仅是传统光源的 1/10,具有不使用严重污染环境的汞、体积小、寿命长等优点。随着超高亮度 LED 性能的改进,大功率 LED 有望取代白炽灯等照明光源,成为第四代照明光源[王晓明,郭伟玲,高国,等. LED——新一代照明光源. 现代显示,2005,53,15~20]。

[0004] 随着大功率 LED 的发展,客户对封装过程中使用的材料提出了越来越高的要求,新的材料不仅要满足客户生产的工艺要求,同时对材料的耐 UV 性能和耐热性提出了新的挑战。

[0005] 用于大功率 LED 芯片固定的导电胶粘剂直接影响最终产品的光学性能和可靠性,大功率 LED 对导电银胶的要求是高导电、高导热性能和高剪切强度。传统的环氧导电粘结剂粘接性能优异,但是环氧树脂基体往往不耐 UV,在 UV 光和热的综合作用下,其易发生黄变从而影响 LED 发光寿命。因此不适合用于能发射紫外波长的 LED 和大功率 LED,以及在户外使用。

[0006] 目前,使用的另一种胶粘剂是硅氧烷类胶粘剂,具有硅氧主链结构,结构式如下所示:

[0007]

[0008] 具有较强的耐紫外性,因此适用于任何紫外关照场合。日本信越化学工业(信越シリコーン)的 SMP-2800L,日本藤仓化成(藤倉化成)的单组份含溶剂有机硅导电胶(DOTITE 的 XA-819A 和 FX-730),便是此类产品。因为聚硅氧的主链的极性较小,所以上述所述的导电胶的粘接性较差,芯片推力偏小,室温小片推力 〈5Kgf/die(2×2mm)。

[0009] 综上所述,尚需开发一种新型的胶粘剂,不仅具有耐高温性能和耐 UV 性能,而且具有良好的粘接性能。

发明内容

[0010] 本发明的目的在于提供一种 LED 用氨基固化体系环氧功能化有机硅导电胶粘剂,

将聚硅氧烷和环氧树脂两者的优势结合,不仅可以保留聚硅氧烷树脂的耐高温性能和耐 UV 性能,而且可使产品具有良好的粘接性能。

[0011] 本发明的 LED 用氨基固化体系环氧功能化有机硅导电胶粘剂,包含具有以下重量份的组份:

[0012]

10~20
7~20
60~85
0.1~0.3
0.3~0.7

[0013] 根据本发明,所述的有机硅环氧树脂选自下组中的一种或两种以上:

[0014] a. 端基为脂环环氧基团的硅油 SiMAET

[0016] 其中, n=1~6;

[0017] b. 端基为脂环环氧基团的甲基苯基硅油 SiMPAET

[0019] 其中, n=1~6;

[0020] c. 侧基为脂环环氧基团的硅油 SiMAE

[0021]

[0022] 其中, n/m=1~6;

[0023] d. 端基为环氧基团的甲基硅油 SiMET

[0024]

[0025] 其中, n=1~6;

[0026] e. 端基为环氧基团的甲基苯基硅油 SiMPET

[0027]

[0028] 其中, n=1-6;

[0029] f. 侧基为环氧基团的硅油 SiME

[0031] 其中, n/m=1~6。

[0032] 根据本发明,所述的有机硅固化剂为 SiMNH:

[0033]
$$NH_2$$
— CH_2 — CH_2 — CH_2 — CH_3 — CH_3 — CH_2 — CH_2 — CH_2 — NH_2 ,
 CH_3 — CH_3 —

[0034] 其中, n=1~6;或 SiMPNH:

[0035]
$$NH_{2}-CH_{2}-CH_{2}-Si+O-Si+CH_{2}-CH_{2}-NH_{2}$$

$$CH_{3}-CH_{3}-CH_{2}-CH_{2}-NH_{2}$$

[0036] 其中, n=1-6。

[0037] 根据本发明,所述固化促进剂为 2MZ:2- 甲基咪唑、2E4MZ:2- 乙基-4- 甲基咪唑、2PZ:2- 苯基咪唑、1B2MZ:1- 苄基-2- 甲基咪唑、2MZL:2- 甲基咪唑啉、2P4MZ:2- 苯基-4- 甲基咪唑、2MZ-CN:1- 氰乙基-2- 甲基咪唑、2PZ-CN:1- 氰乙基-2- 苯基咪唑、2E4MZ-CN:1- 氰乙基-2- 乙基-4- 甲基咪唑、2MZ-A:2,4- 二氨基-6[2'- 甲基咪唑-(1')] 乙基-S- 三嗪中的一种。

[0038] 根据本发明,所述导电填料为颗粒 D90 小于 50 微米的片状银粉、球状银粉、无定型银粉中的一种或者它们的混合物,其中颗粒 D90 是指样品的累计粒度分布数达到 90% 时所对应的粒径。

[0039] 根据本发明,所述界面补强剂硅烷偶联剂为 dowcoring z6040,化学成分为 3-缩 水甘油基丙基三甲氧基硅烷。

[0040] 本发明具有如下有益效果:本发明的导电胶在低温下贮存时间超过 6 个月,室温下粘度增加 25% 的时间超过 48h。固化后热分解温度 (2% 质量失重温度)>300 \mathbb{C} ,室温小片推力 >5Kgf/die (2×2mm),体积电阻率 $\leq 3.0 \times 10^{-4} \text{W} \cdot \text{cm}$ 。该胶粘剂具有良好的贮存稳定性,固化后具有优异的导电性、耐热性和耐 UV 性。

具体实施方式

[0041] 以下结合具体实施例,对本发明做进一步说明。应理解,以下实施例仅用于说明本发明而非用于限制本发明的范围。

[0042] 如本文所用, SiMAET 是指端基为脂环环氧基团的硅油, 结构为:

[0044] 其中, n=1~6;

[0045] SiMPAET 是指端基为脂环环氧基团的甲基苯基硅油,结构为:

[0046]
$$O \longrightarrow CH_2-CH_2-Si + O-Si + CH_2-CH_2 O$$

$$CH_3 CH_3 CH_3$$

[0047] 其中, n=1~6;

[0048] SiMAE 是指侧基为脂环环氧基团的硅油,结构为:

[0050] 其中, n/m=1~6;

[0051] SiMET 是指端基为环氧基团的甲基硅油,结构为:

[0052]

[0053] 其中, n=1[~]6;

[0054] SiMPET 是指端基为环氧基团的甲基苯基硅油,结构为:

[0055]

[0056] 其中, n=1~6;

[0057] SiME 是指侧基为环氧基团的硅油,结构为:

[0059] 其中, n/m=1~6。

[0060] 如本文所用,有机硅固化剂为 SiMNH,结构式为:

[0061]
$$NH_2$$
— CH_2 — CH_2 — CH_2 — CH_3 — CH_3 — CH_3 — CH_2 — CH_2 — CH_2 — NH_2 , CH_3 — CH_3 —

[0062] 其中, n=1~6;或 SiMPNH,结构式为:

[0063]
$$NH_2$$
— CH_2 — CH_2 — Si — O — Si — CH_2 — CH_2 — NH_2
 CH_3 CH_3

[0064] 其中, n=1-6。

[0065] 如本文所用,固定促进剂及其对应的缩写如下:

[0066] 2MZ:2-甲基咪唑、2E4MZ:2-乙基-4-甲基咪唑、2PZ:2-苯基咪唑、1B2MZ:1-苄基-2-甲基咪唑、2MZL:2-甲基咪唑啉、2P4MZ:2-苯基-4-甲基咪唑、2MZ-CN:1-氰乙基-2-甲基咪唑、2PZ-CN:1-氰乙基-2-苯基咪唑、2E4MZ-CN:1-氰乙基-2-乙基-4-甲基咪唑、2MZ-A:2,4-二氨基-6[2'-甲基咪唑-(1')]乙基-S-三嗪。

[0067] 在以下实施例中,所用银粉导电填料颗粒的 D90 小于 50 微米,为片状银粉、球状银粉、无定型银粉中的一种或者它们的混合物。所用界面补强剂硅烷偶联剂为 dowcoring z6040。

[**0068**] 实施例 1[~]5

[0069] 实施例 1^5 的 LED 用氨基固化体系环氧功能化有机硅导电胶粘剂的组份(重量份数)及性能如表 1 所示。

[0070] 表 1 实施例 1^{5} 的组分及性能

[0071]

	实施例	1	2	3	4	5
	SiMAET	5	7.5	10	10	0
	SiMPAET	5	7.5	10	0	10
	SiMNH	8	12	16	9	7
组份	银粉	82	73	64	81	83
	固化促进剂种类	2PZ	1B2MZ	2P4MZ	2PZ-CN	2MZ-A
	固化促进剂份数	0.1	0.2	0.3	0.1	0.1
	Z6040	0.7	0.5	0.3	0.7	0.7
性能	折射率	1.47	1.47	1.47	1.43	1.50
	玻璃化转变温度/℃	119	118	122	99	130
	芯片推力 2mm×2mm	8.8	8.7	8.7	7.7	11.0
	电阻率/10 ⁴ Ω.cm	1.9	2.5	2.9	2.0	1.8

[0072] 由表 1 可知,折射率为 1. 43° 1. 50,玻璃化转变温度为 99° 130℃,2mm×2mm 芯片推力为 7. 7° 11. 0Kgf(25℃),电阻率为 1. 8× 10^{-4} °2. 9× 10^{-4} W. cm

[0073] 实施例 $6^{\sim}10$

[0074] 实施例 $6^{\sim}10$ 的 LED 用氨基固化体系环氧功能化有机硅导电胶粘剂的组份(重量份数)及性能如表 2 所示。

[0075] 表 2 实施例 $6^{\sim}10$ 的组分及性能

[0076]

	实施例	6	7	8	9	10
组份	SiMAET	5	7.5	10	10	0
	SiMAE	5	7.5	10	0	10
	SiMPNH	10	15	20	10	10
	银粉	80	70	60	80	80
	固化促进剂种类	2MZ	2E4MZ	2MZL	2MZ-CN	2E4MZ-CN
	固化促进剂份数	0.1	0.2	0.3	0.1	0.1
	Z6040	0.7	0.5	0.3	0.7	0.7
性能	折射率	1.50	1.50	1.50	1.50	1.50
	玻璃化转变温度/℃	96	97	100	137	91
	芯片推力 2mm×2mm	6.5	6.5	6.4	7.0	5.9
	电阻率/10-4Ω.cm	2.0	2.5	3.0	2.0	2.0

[0077] 由表 2 可知, 折射率为 1. 50, 玻璃化转变温度为 $91^{^{\sim}}137$ $^{\circ}$ $^{\circ}$ 2 mm×2 mm 芯片推力为 5. $9^{^{\sim}}7$. 0 Kgf (25 $^{\circ}$), 电阻率为 2. 0 × 10^{-4} $^{\circ}$ 3. 0 × 10^{-4} W. cm.

[0078] 实施例 11[~]15

[0079] 实施例 $11^{^{\sim}}15$ 的 LED 用氨基固化体系环氧功能化有机硅导电胶粘剂的组份(重量份数)及性能如表 3 所示,折射率为 $1.43^{^{\sim}}1.50$,玻璃化转变温度为 $93^{^{\sim}}125^{^{\circ}}C$,2mm×2mm 芯片推力为 $6.5^{^{\sim}}10.3$ Kgf($25^{^{\circ}}C$),电阻率为 $1.8\times10^{^{-4}}$ 2. $9\times10^{^{-4}}$ W. cm。

[0080] 表 3 实施例 $11^{\sim}15$ 的组分及性能

[0081]

	实施例	11	12	13	14	15
5	SiMET	5	7.5	10	10	0
	SiMPET	5	7.5	10	0	10
	SiMNH	8	12	16	9	7
组份	银粉	82	73	64	81	83
	固化促进剂种类	2PZ	1B2MZ	2P4MZ	2PZ-CN	2MZ-A
	固化促进剂份数	0.1	0.2	0.3	0.1	0.1
	Z6040	0.7	0.5	0.3	0.7	0.7
性能	折射率	1.47	1.47	1.47	1.43	1.50
	玻璃化转变温度/℃	110	112	115	93	125
	芯片推力 2mm×2mm	7.7	7.7	7.5	6.5	10.3
	电阻率/10 ⁴ Ω.cm	1.9	2.5	2.9	2.0	1.8

[**0082**] 实施例 16²0

[0083] 实施例 16²0 的 LED 用氨基固化体系环氧功能化有机硅导电胶粘剂的组份(重量

份数)及性能如表 4 所示, 折射率为 1. 50, 玻璃化转变温度为 85 $^{\circ}$ 130 $^{\circ}$ C, 2mm×2mm 芯片推力为 5. 8 $^{\circ}$ 7. 0Kgf(25 $^{\circ}$ C), 电阻率为 2. 0×10 $^{-4}$ °3. 0×10 $^{-4}$ W. cm。

[0084] 表 4 实施例 16^2 20 的组分及性能 [0085]

	实施例	16	17	18	19	20
组份	SiMET	5	7.5	10	10	0
	SiME	5	7.5	10	0	10
	SiMPNH	10	15	20	10	10
	银粉	80	70	60	80	80
	固化促进剂种类	2MZ	2E4MZ	2MZL	2MZ-CN	2E4MZ-CN
	固化促进剂份数	0.1	0.2	0.3	0.1	0.1
	Z6040	0.7	0.5	0.3	0.7	0.7
性能	折射率	1.50	1.50	1.50	1.50	1.50
	玻璃化转变温度/°C	91	91	93	130	85
	芯片推力 2mm×2mm	6.5	6.3	6.3	7.0	5.8
	电阻率/10 ⁴ Ω.cm	2.0	2.5	3.0	2.0	2.0

[0086] 同时经测试,本发明的导电胶在低温贮存时间超过6个月,室温下粘度增加25%时间超过48h。

[0087] 固化后热分解温度 (2% 质量失重)>300 ℃,室温小片推力 >5Kgf/die(2×2mm),体积电阻率 \leq 3.0×10 $^{-4}$ W • cm,具有优异的导电性、耐热性和耐 UV 性。