(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 104305465 B (45) 授权公告日 2016.06.22

(21)申请号 201410512244.8

(22)申请日 2014.09.29

(73) 专利权人 华中农业大学 地址 430070 湖北省武汉市洪山区狮子山街 1号

专利权人 襄阳佰蒂生物科技股份有限公司

- (72) 发明人 范刚 杨书珍 刘雨佳 任婧楠 邓以超 潘思轶 王海英
- (74) 专利代理机构 武汉开元知识产权代理有限 公司 42104

代理人 樊戎 艾小倩

(51) Int. CI.

A23L 2/84(2006.01) **A23L** 2/04(2006.01)

(56) 对比文件

CN 102309040 A, 2012. 01. 11, 说明书第

0009-0012段.

W0 2011/129693 A1, 2011. 10. 20, 权利要求 1、9、10, 说明书实施例 1.

CN 102356913 A, 2012. 02. 22, 权利要求 1. CN 103750470 A, 2014. 04. 30, 全文.

审查员 杨叶波

权利要求书1页 说明书6页

(54) 发明名称

乳酸菌发酵型蓝莓果汁的制备方法

(57) 摘要

本发明公开了一种乳酸菌发酵型蓝莓果汁的制作方法,其特征在于:它包含如下步骤:(1)将复配乳酸菌发酵剂加入到MRS肉汤培养基中,进行活化,再依次取菌液加入果汁中培养;(2)挑选新鲜的蓝莓清洗,再在水中烫漂;(3)再将蓝莓榨成蓝莓汁,并放入胶体磨中研磨;最后加入蔗糖调配蓝莓汁的糖度;(4)将研磨好的蓝莓汁放入热水中水浴;(5)将活化后的菌种接入到步骤(4)处理好的蓝莓汁中;再放入培养箱中发酵;发酵后的蓝莓汁在热水中水浴,得到乳酸菌发酵型蓝莓果汁。本发明制作工艺简单,产品风味好,营养丰富。以本发明工艺制得的乳酸菌发酵型蓝莓果汁饮料口感圆润、风味优良、酸甜适口,直接饮用即可,冷冻风味更佳。

- 1.一种乳酸菌发酵型蓝莓果汁的制作方法,其特征在于:它包含如下步骤:
- (1)挑选新鲜的蓝莓清洗,再在90~95℃的水中烫漂2~4min以达到灭酶护色的目的;
- (2)再将蓝莓榨成蓝莓果汁,将蓝莓果汁放入胶体磨中研磨;最后加入蔗糖将蓝莓果汁的糖度调到14~16%;
- (3)将研磨好的蓝莓果汁放入95~100℃热水中水浴12~15min,以杀灭蓝莓果汁中的有害微生物和致病菌;
- (4)将复配乳酸菌发酵剂以1g/100mL的比例加入到MRS肉汤培养基中,在35~37℃培养22~24h进行活化得到菌液,所述复配乳酸菌发酵剂以质量分数计包括如下组分:20%双歧杆菌、20%保加利亚乳杆菌、15%嗜热链球菌、15%嗜酸乳杆菌、10%干酪乳杆菌、10%鼠李糖乳杆菌、10%双歧因子;
- (5)将步骤(4)活化后的菌液按质量分数4~5%的接种量接入到步骤(3)处理好的蓝莓果汁中在35~37℃培养22~24h进行发酵;发酵后的蓝莓果汁在95~100℃热水中水浴8~10min,最终得到乳酸菌发酵型蓝莓果汁;

所述步骤(1)中蓝莓清洗后再在95℃的水中烫漂2min:

所述步骤(2)中加入蔗糖将蓝莓汁的糖度调到16%;

所述步骤(3)中将研磨好的蓝莓汁放入100℃热水中水浴15min;

所述步骤(4)在MRS肉汤培养基中,培养温度为37℃,培养时间为24h。

2.根据权利要求1所述的乳酸菌发酵型蓝莓果汁的制作方法,其特征在于:所述步骤(5)中将步骤(4)活化后的菌种按质量分数5%的接种量接入到步骤(3)处理好的蓝莓汁中;将接种好的蓝莓汁放入37℃的培养箱中,发酵24h;发酵后的蓝莓汁在100℃热水中水浴10min。

乳酸菌发酵型蓝莓果汁的制备方法

技术领域

[0001] 本发明涉及食品加工技术领域,具体的是指一种乳酸菌发酵型蓝莓果汁的制备方法。

背景技术

[0002] 蓝莓,果实为浆果,蓝色,其果肉细腻,种子极小,甜酸适口,并具有清爽怡人的香 气。蓝莓营养丰富,不仅富含糖、酸、VC等常规营养成分,而且还含有极为丰富的黄酮类和多 糖类化合物。蓝莓果实具有防止脑神经衰老、增强心脏功能、明目及抗癌、增强人机体免疫、 治疗泌尿系统感染等功能,被誉为"浆果之王",是联合国粮农组织推荐的人类五大健康食 品之一(马珦玻等,野生蓝莓汁乳酸菌饮料的研究[J],2009,30(7),78-81)。目前市场上蓝 莓大多加工成蓝莓汁饮料、蓝莓果酒饮品。乳酸菌是一种存在于人类体内的益生菌。益生菌 能够对人体的肠道菌群产生积极影响,使之成为研究的热点(丘裕,益生菌发酵南瓜汁和火 龙果汁的研究,[硕士学位论文],广州:华南理工大学,2012)。乳酸菌可用于制造酸奶、乳 酪、葡萄酒、泡菜、腌渍食品和其他发酵食品。益生菌在宿主体内发挥着调节肠道菌群、抑制 有害菌、营养宿主、增强免疫、抑制肿瘤、延缓衰老等生理功能。双歧杆菌制品是将双歧杆菌 经工业化扩大培养,再经口服回归宿主原来的生境,发挥其益生功能的制品(王洋等,长寿 老人源双歧杆菌发酵雪莲果饮料的研制[J],2010,31(18),445-449)。乳酸菌发酵果蔬汁可 以将果蔬加工与乳酸菌的发酵相结合,创造出集果蔬的营养价值和益生菌的保健功能于一 体的新型发酵饮料。而市场上的乳酸菌发酵的产品大多为发酵奶制品,发酵果蔬汁的产品 很少;而在乳酸菌发酵果蔬汁的产品中,没有蓝莓发酵饮料。

发明内容

[0003] 针对现有技术的不足,本发明的目的是提高一种乳酸菌发酵型蓝莓果汁的制备方法,在乳酸菌发酵的基础上,以蓝莓为发酵水果,开发一种色、香、味良好,营养丰富,生产工艺简单,口感圆润、风味优良的乳酸菌发酵蓝莓果汁饮料。

[0004] 为实现上述目的,本发明提供的乳酸菌发酵型蓝莓果汁饮料的制作方法,先将蓝莓处理成蓝莓果汁,调整到合适的糖度并杀菌;再将活化好的乳酸菌接种入蓝莓果汁,发酵杀菌后包装,即为乳酸菌发酵型蓝莓果汁饮料,乳酸菌发酵型蓝莓果汁的制作方法,其特征在于:它包含如下步骤:

[0005] (1)挑选新鲜的蓝莓清洗,再在90~95℃的水中烫漂2~4min以达到灭酶护色的目的;

[0006] (2)再将蓝莓榨成蓝莓果汁,将蓝莓果汁放入胶体磨中研磨;最后加入蔗糖将蓝莓果汁的糖度调到14~16%;

[0007] (3)将研磨好的蓝莓果汁放入95 \sim 100 $^{\circ}$ 热水中水浴12 \sim 15min,以杀灭蓝莓果汁中的有害微生物和致病菌;

[0008] (4)将复配乳酸菌发酵剂以1g/100mL的比例加入到MRS肉汤培养基中,在35~37℃

培养22~24h进行活化得到菌液,所述复配乳酸菌发酵剂以质量分数计包括如下组分:20% 双歧杆菌、20%保加利亚乳杆菌、15%嗜热链球菌、15%嗜酸乳杆菌、10%干酪乳杆菌、10% 鼠李糖乳杆菌、10% 双歧因子;

[0009] (5)将步骤(4)活化后的菌液按质量分数4~5%的接种量接入到步骤(3)处理好的蓝莓果汁中在35~37℃培养22~24h进行发酵;发酵后的蓝莓果汁在95~100℃热水中水浴8~10min,最终得到乳酸菌发酵型蓝莓果汁。

[0010] 作为一种优选方案,所述步骤(1)中蓝莓清洗后再在95℃的水中烫漂2min。

[0011] 作为又一种优选方案,所述步骤(2)中加入蔗糖将蓝莓汁的糖度调到16%。

[0012] 作为又一种优选方案,所述步骤(3)中将研磨好的蓝莓汁放入100℃热水中水浴 15min。

[0013] 作为又一种优选方案,所述步骤(4)在MRS肉汤培养基中,培养温度为37℃,培养时间为24h。

[0014] 作为又一种优选方案,所述步骤(5)中将步骤(4)活化后的菌种按质量分数5%的接种量接入到步骤(3)处理好的蓝莓汁中;将接种好的蓝莓汁放入37℃的培养箱中,发酵24h;发酵后的蓝莓汁在100℃热水中水浴10min。

[0015] 本发明的乳酸菌发酵型蓝莓果汁饮料的制作工艺,是将新鲜蓝莓进行处理,清洗、烫漂、打浆制成蓝莓果汁,再用蔗糖将蓝莓汁的糖度调到16%后杀菌;其次按5%的接种量将乳酸菌接种到处理好的蓝莓果汁中,37℃发酵24h,杀菌后即得到口感圆润、风味优良、酸甜适口的乳酸菌发酵蓝莓果汁饮料。

[0016] 本发明具有如下优点:

[0017] 1、将蓝莓作为原料,不仅甜酸适口,具有清爽怡人的香气,同时营养丰富,具有防止脑神经衰老、增强心脏功能、明目及抗癌、增强人机体免疫、治疗泌尿系统感染等功能。

[0018] 2、采用七种复合乳酸菌进行发酵,不仅使蓝莓汁风味和口感更加柔和,同时更加丰富了蓝莓汁的营养保健性。乳酸菌是一种存在于人类体内的益生菌,益生菌能够对人体的肠道菌群产生积极影响。

[0019] 3、在目前市场上的果蔬汁和发酵乳制品的基础上,创新出一种新产品,将乳酸菌发酵与果蔬汁结合起来。生产工艺简单,风味独特,可直接饮用,冷冻更佳。

具体实施方式

[0020] 以下结合具体实施例对本发明作进一步的详细描述。

[0021] 实施例一:

[0022] 本发明的乳酸菌发酵型蓝莓果汁的制作方法,先将蓝莓处理成蓝莓汁,调整到合适的糖度并杀菌;再将活化好的乳酸菌接种入蓝莓果汁,发酵杀菌后包装,即为乳酸菌发酵蓝莓果汁饮料,其具体制备步骤如下:

[0023] 1、材料:蓝莓果实:湖北襄阳;菌种:泡菜菌(植物乳杆菌)、乳酸菌(嗜热链球菌、保加利亚乳杆菌)、双歧杆菌五菌(双歧杆菌、保加利亚乳杆菌、嗜热链球菌、嗜酸乳杆菌、干酪乳杆菌)、双歧杆菌七菌(双歧杆菌、保加利亚乳杆菌、嗜热链球菌、嗜酸乳杆菌、干酪乳杆菌、鼠李糖乳杆菌、双歧因子),由北京川秀科技有限公司提供;白砂糖;培养基:MRS肉汤培养基。

[0024] 2、菌种的活化与驯化:将商业发酵剂1g加入100mLMRS肉汤培养基中37℃恒温培养24h进行活化,再依次取10mL菌液加入含30%(m/m)、60%(m/m)果汁中37℃培养24h。

[0025] 3、工艺流程:

[0026] (1)挑选较新鲜,没有虫害霉变的完整的蓝莓,清洗。再在95℃的热水中烫漂2min 以达到灭酶护色的目的。

[0027] (2)首先将蓝莓打浆,再将蓝莓浆放入胶体磨中研磨,将果汁中的颗粒磨 得更加微细,利于发酵。最后根据蓝莓果汁的糖度,加入蔗糖把糖度调到16%。

[0028] (3)发酵前将磨好的蓝莓果汁放入100℃热水中水浴15min,以达到杀灭果汁中的有害微生物和致病菌的目的。

[0029] (4)将活化后的菌种按5%的接种量接入到处理好的蓝莓果汁中。将接种好的蓝莓果汁放入37℃的培养箱中,发酵24h。发酵后的蓝莓果汁在100℃热水中水浴10min,最终得到乳酸菌发酵的蓝莓果汁。

[0030] 4、乳酸菌发酵型蓝莓果汁饮料的食用方法:本饮料可直接饮用,冷藏后食用风味更佳。

[0031] 实施例二:

[0032] 本发明的乳酸菌发酵型蓝莓果汁的制作方法,先将蓝莓处理成蓝莓汁,调整到合适的糖度并杀菌;再将活化好的乳酸菌接种入蓝莓果汁,发酵杀菌后包装,即为乳酸菌发酵蓝莓果汁饮料,其具体制备步骤同实施例一,具体区别如下:

[0033] 1、菌种的活化与驯化:将商业发酵剂1g加入100mLMRS肉汤培养基中35℃恒温培养22h进行活化,再依次取8mL菌液加入含30%(m/m)、60%(m/m)果汁中35℃培养22h。

[0034] 2、工艺流程:

[0035] (1)挑选较新鲜,没有虫害霉变的完整的蓝莓,清洗。再在90℃的热水中烫漂4min 以达到灭酶护色的目的。

[0036] (2)根据蓝莓果汁的糖度,加入蔗糖把糖度调到14%。

[0037] (3)发酵前将磨好的蓝莓果汁放入95℃热水中水浴12min。

[0038] (4)将活化后的菌种按4%的接种量接入到处理好的蓝莓果汁中。将接种好的蓝莓果汁放入35℃的培养箱中,发酵22h;发酵后的蓝莓果汁在95℃热水中水浴8min,最终得到乳酸菌发酵的蓝莓果汁。

[0039] 实施例三:

[0040] 本发明的乳酸菌发酵型蓝莓果汁的制作方法,先将蓝莓处理成蓝莓汁,调整到合适的糖度并杀菌;再将活化好的乳酸菌接种入蓝莓果汁,发酵杀菌后包装,即为乳酸菌发酵蓝莓果汁饮料,其具体制备步骤同实施例一,具体区别如下:

[0041] 1、菌种的活化与驯化:将商业发酵剂1g加入100mLMRS肉汤培养基中36℃恒温培养23h进行活化,再依次取9mL菌液加入含30%(m/m)、60%(m/m)果汁中36℃培养23h。

[0042] 2、工艺流程:

[0043] (1)挑选较新鲜,没有虫害霉变的完整的蓝莓,清洗。再在95℃的热水中烫漂3min以达到灭酶护色的目的。

[0044] (2)根据蓝莓果汁的糖度,加入蔗糖把糖度调到15%。

[0045] (3)发酵前将磨好的蓝莓果汁放入98℃热水中水浴14min。

4/6 页

[0046] (4)将接种好的蓝莓果汁放入36℃的培养箱中,发酵23h;发酵后的蓝莓果汁在98℃热水中水浴9min,最终得到乳酸菌发酵的蓝莓果汁。

[0047] 实验例一:最佳发酵时间与接种量的确定

[0048] 发酵时间、发酵剂的接种量等都会影响产品的风味,为研究最佳发酵工艺参数,本试验对比同种发酵剂的不同接种量、不同发酵时间对蓝莓果汁发酵产品的影响,以酸度、糖度和制品的品质风味为综合评判指标研究最佳发酵工艺参数。选用菌种:泡菜菌(植物乳杆菌)、乳酸菌(嗜热链球菌、保加利亚乳杆菌)、双歧杆菌五菌(双歧杆菌、保加利亚乳杆菌、嗜热链球菌、嗜酸乳杆菌、干酪乳杆菌)、双歧杆菌七菌(双歧杆菌、保加利亚乳杆菌、嗜热链球菌、嗜酸乳杆菌、干酪乳杆菌、鼠李糖乳杆菌、双歧因子),由北京川秀科技有限公司提供。

[0049] 1、泡菜菌试验结果

[0050] 初始蓝莓果汁,pH值:3.15,糖度:10.5

[0051] 表1:发酵时间与接种量对蓝莓果汁的影响

接种量	3%		5%		8%	
发酵时间(h)	酸度 (pH)	糖度(%)	酸度 (pH)	糖度(%)	酸度 (pH)	糖度(%)
6	3.11	10.5	3.13	10.5	3.13	10.5
12	3.07	10.5	3.10	10.5	3.13	10.5
24	3.07	10.3	3.06	10.4	3.10	10.4
36	3.05	10.2	3.06	10.2	3.10	10.3
48	3.06	10.0	3.08	10.2	3.12	10.2

[0052]

[0053] 2、乳酸菌试验结果

[0054] 初始蓝莓果汁,pH值:3.17,糖度:11.0

[0055] 表2:发酵时间与接种量对蓝莓果汁的影响

[0056]

接种量	3%		5%	8%		
发酵时间(h)	酸度 (pH)	糖度(%)	酸度 (pH)	糖度(%)	酸度 (pH)	糖度(%)
6	3.16	11.0	3.17	10.8	3.17	10.5
12	3.13	10.8	3.12	10.5	3.13	10.3
24	3.10	10.5	3.09	10.2	3.09	10.0
36	3.09	10.4	3.09	10.2	3.08	10.0
48	3.09	10.4	3.08	10.1	3.07	10.1

[0057] 3、双歧杆菌五菌试验结果

[0058] 初始蓝莓果汁,pH值:3.25,糖度:11.5

[0059] 表3:发酵时间与接种量对蓝莓果汁的影响

[0060]

接种量		3%		5%	8%		
发酵时间(h)	酸度 (pH)	糖度(%)	酸度 (pH)	糖度(%)	酸度 (pH)	糖度(%)	
6	3. 23	11.4	3. 22	11.0	3.20	10.8	
12	3.22	11.2	3.18	11.0	3.16	10.8	
24	3.15	10.8	3.11	10.6	3.10	10.5	
36	3.13	10.5	3.11	10.4	3.11	10.5	
48	3.11	10.5	3.10	10.4	3.11	10.4	

[0061] 4、双歧杆菌七菌试验结果

[0062] 初始蓝莓果汁,pH值:3.17,糖度:10.9

[0063] 表4:发酵时间与接种量对蓝莓果汁的影响

[0064]

接种量		3%		5%	8%		
发酵时间(h)	酸度 (pH)	糖度(%)	酸度 (pH)	糖度(%)	酸度 (pH)	糖度(%)	
6	3.16	10.7	3.16	10.6	3.16	10.5	
12	3.14	10.5	3.14	10.5	3.12	10.5	
24	3.13	10.4	3.11	10.3	3.10	10.1	
36	3.13	10.5	3.09	10.3	3.09	10.1	
48	3.11	10.2	3.10	10.3	3.10	10.0	

[0065] 5、结果分析

[0066] 根据上述四种发酵剂的发酵情况的比较,发现发酵时间对蓝莓果汁酸度及风味影响最大,而发酵24h的蓝莓果汁风味最好,随着发酵时间的延长,风味变化不大。接种量对发酵制品的影响较小,结果显示5%的接种量即可在较短时间内达到理想的发酵效果。故选出四种发酵剂的最佳接种量为5%,最佳发酵时间为24h。

[0067] 实验例二:发酵剂的确定

[0068] 按照筛选出来的发酵时间与接种量,分别发酵两批蓝莓果汁,一批发酵前调整糖度到16%,另一批发酵后调整糖度到15%。对比不同发酵剂对发酵蓝莓果汁的影响,选出最适发酵剂。

[0069] 表5:不同发酵剂对蓝莓果汁的影响

	发酵剂	泡菜菌		乳酸菌		双歧杆菌五菌		双歧杆菌七菌	
[0070]	处理	加糖	未加 糖	加糖	未加 糖	加糖	未加 糖	加糖	未加 糖
	糖度(%)	15.3	7.5	15.6	7.8	15.2	7.2	15.2	7.3
	酸度 (pH)	3.13	3.12	3.13	3.10	3.06	3.13	3.05	3.06

[0071] 通过感官评定,泡菜菌发酵的蓝莓果汁气味不佳,故不选择该菌,而其他三种发酵剂风味相似,但略有差别,双歧杆菌七菌发酵的蓝莓果汁风味酸甜合适,风味更佳。再通过与样品的酸度、糖度以及风味的对比,选出双歧杆菌七 菌为最佳发酵剂。再对比双歧杆菌发酵的蓝莓果汁,发酵前加糖的风味更佳,即为最佳发酵方案。

[0072] 小结:

[0073] 产品的诱人外观和风味优美,是产品吸引消费者的重要因素。试验结果表明,发酵剂接种量为5%(m/m),发酵时间为24h,发酵温度为37℃,发酵剂为双歧杆菌七菌时,可制取口感圆润、风味优良的乳酸菌发酵型蓝莓果汁饮料。

[0074] 注:本发明中的30%(m/m)=30%*30%*30%mm。