(19)中华人民共和国国家知识产权局

(12)发明专利

(10)授权公告号 CN 102270587 B (45)授权公告日 2016.08.03

- (21)申请号 201110091084.0
- (22)申请日 2011.04.04
- (73)专利权人 烟台恒迪克能源科技有限公司 地址 264670 山东省烟台市高新区航天路 101号烟台市大学生创业园C-109室
- (72)发明人 修建东
- (51) Int.CI.

 HO1L 21/56(2006.01)

(56)对比文件

CN 101298583 A,2008.11.05,

JP 特开平8-90564 A,1996.04.09,

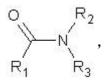
CN 1935939 A,2007.03.28,

审查员 吕阗

权利要求书1页 说明书3页

(54)发明名称

一种塑封晶体管溢料软化液及其制备方法


(57)摘要

本发明涉及半导体塑封封装工艺流程的去飞边化工技术领域,尤指一种塑封晶体管溢料软化液及其制备方法,该软化液具有造价低廉、使用方便,并提高了塑封晶体管封装良率以及组装良率,其组分及质量百分含量为:A组分60%~80%,B组分2%~10%,C组分0~5%,D组分1%~10%,E组分10%~30%,本发明的制备方法为:将上述组分原料在30~50℃温度下加热溶解,在反应釜中逐个加入上述各组分,使其全部溶解,可得到均匀透明的弱碱性浅黄色液体,罐装即为成品。

1.一种塑封晶体管溢料软化液,其特征是:所述的塑封晶体管溢料软化液的组分及质量百分含量为:

A组分 $60\% \sim 80\%$ B组分 $2\% \sim 10\%$ C组分 $0 \sim 5\%$ D组分 $1\% \sim 10\%$ E组分 $10\% \sim 30\%$

其中,A组分是至少一种具有通式结构的酰胺化合物,

B组分是通式为R₄O-(AO)_n-R₅的化合物,C组分是NH₄F,D组分是醇胺,E组分是去离子水,R₁或者是H或者是碳数为1~4的烷基,R₂是碳数为1~4的烷基、烯基或羟烷基,R₃是碳数为1~4的烷基、烯基或羟烷基。

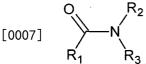
- 2.根据权利要求1所述的一种塑封晶体管溢料软化液,其特征是:所述的通式为 R_40 - $(A0)_n$ - R_5 的化合物中, R_4 是碳数为6~18的烷基、烯基或苯基; R_5 或者是H或者是碳数为1~6的烷基、烯基中的一种;A0是具有碳数为2~4的环氧烷烃,n是从9到20的整数。
- 3.根据权利要求1所述的一种塑封晶体管溢料软化液,其特征是:所述的醇胺是三乙醇胺、二乙醇胺和异丙醇胺中的至少一种。
- 4.一种权利要求1中的塑封晶体管溢料软化液的制备方法,其特征在于:将各组分原料在30~50℃温度下加热溶解,在反应釜中逐个加入上述各组分,使其全部溶解,可得到均匀透明的弱碱性浅黄色液体,罐装即为成品。

一种塑封晶体管溢料软化液及其制备方法

技术领域

[0001] 本发明涉及半导体塑封封装工艺流程的去飞边化工技术领域,尤指一种塑封晶体管溢料软化液及其制备方法。

背景技术


[0002] 自2000年以来,中国半导体产业的发展开始步入快车道,国内IC设计和芯片制造规模的不断扩大,内地崛起的半导体晶圆代工产业的发展,对后段制造的拉动效应已开始显现,中国半导体封装测试业在近几年也同样保持了稳定快速发展的势头;国内电子产品市场的迅速壮大,出于接近客户需求目的,特别是得益于国内良好的投资环境,国际大型半导体公司纷纷将其封装企业转移至国内,直接拉动了国内半导体封装产业规模的迅速扩大,目前中国已经成为全球增长最快的半导体封装市场之一。根据资料显示,90%以上的晶体管及70%~80%的集成电路已使用塑料封装材料,而环氧树脂封装塑粉是最常见的塑料封装材料。典型的晶体管封装工艺流程为:划片、装片、键合、塑封、去飞边、电镀、打印、切筋、外观检查、测试和包装出货,溢料问题是封装过程中常见的质量问题,有溢料就会形成飞边、附着接线引脚和散热片,从而影响成品晶体管外观、可焊性和散热性,如何减少溢料的发生和去除溢料是封装工程师、电镀工程师以及材料生产商和模具制造商共同探讨和重视的课题。将塑封晶体管溢料用化学方法软化,制备一种软化液,为去除溢料提供了一种方便经济的解决办法,提高了塑封晶体管封装良率以及组装良率。

发明内容

[0003] 本发明一种塑封晶体管溢料软化液及其制备方法,具有造价低廉、使用方便,并提高了塑封晶体管封装良率以及组装良率。

[0004] 为了实现上述目的,本发明提供一种塑封晶体管溢料软化液及其制备方法,该软化液的组分及质量百分含量为:

	A 组分	60% ~	80%
	B组分	2% ~	10%
[0005]	C组分	$0 \sim$	5%
	D组分	1% ~	10%
Faaa (]	E组分	10% ~	
[0006]	其中,A组分是至少一种	中具有通过	式结构的酰胺化合物,
	O_{R_2}		

[0008] 这里 R_1 或者是H或者是碳数为 $1\sim4$ 的烷基, R_2 是碳数为 $1\sim4$ 的烷基、烯基或羟烷基, R_3 是碳数为 $1\sim4$ 的烷基、烯基或羟烷基。

[0009] B组分是通式为 R_40 - $(A0)_n$ - R_5 的化合物, R_4 是碳数为6~18的烷基、烯基或苯基, R_5 或者是H或者是碳数为1~6的烷基、烯基中的一种,A0是具有碳数为2~4的环氧烷烃,优选碳数为2或3的环氧烷烃, R_5 以为 R_5 以为

[0010] C组分是NH₄F,在加热的条件下,与溢料中的硅微粉发生化学反应,从而加速溢料的软化。

[0011] D组分是三乙醇胺、二乙醇胺和异丙醇胺中的至少一种,其主要作用为碱性调整剂,使软化液长期稳定显弱碱性。

[0012] E组分是去离子水。

[0013] 本发明的制备方法为:将上述组分原料在30~50℃温度下加热溶解,在反应釜中逐个加入上述各组分,使其全部溶解,可得到均匀透明的弱碱性浅黄色液体,罐装即为成品。

具体实施方式

[0014] 实施例1

[0015]

序号	组分名称	质量百分数(%)
1	CH ₃ CON(CH ₂ CH ₃) ₂	30
2	CH ₃ CON(CH ₃) ₂	40
3	C ₆ H ₁₃ O(CH2CH2O) ₁₅ C ₃ H ₇	2
4	NH ₄ F	3
5	二乙醇胺	5
6	去离子水	20

[0016] 将上述组分原料在30~50℃温度下加热溶解,在反应釜中逐个加入上述各组分,使其全部溶解,可得到均匀透明的弱碱性浅黄色液体,罐装即为成品,使用时,将塑封晶体管放入加热容器中,在70~80℃温度下,加热15~30分钟软化溢料,取出塑封晶体管,用水清洗后,毛刷轻擦即可去处溢料。

[0017] 实施例2

[0018]

序号	组分名称	质量百分数(%)
1	CH ₃ CH ₂ CON(CH ₃) ₂	35
2	HCON(CH3) ₂	35
3	C ₁₃ H ₂₇ O(CH2CH2O)H	2
4	二乙醇胺	5
5	去离子水	23

[0019] 将上述组分原料在30~50℃温度下加热溶解,在反应釜中逐个加入上述各组分,使其全部溶解,可得到均匀透明的弱碱性浅黄色液体,罐装即为成品,使用时,将塑封晶体管放入加热容器中,在70~80℃温度下,加热15~30分钟软化溢料,取出塑封晶体管,用水清洗后,毛刷轻擦即可去处溢料。

[0020] 实施例3

[0021]

序号	组分名称	质量百分数(%)
1	CH ₃ CON(CH ₃)(CH ₂ CH ₂)	20
2	CH ₃ CON(CH ₃) ₂	51
3	C ₆ H ₅ O(CH2CH2O) ₁₅ C ₆ H ₁₃	2
4	NH ₄ F	4
5	三乙醇胺	5
6	去离子水	18

[0022] 将上述组分原料在30~50℃温度下加热溶解,在反应釜中逐个加入上述各组分,使其全部溶解,可得到均匀透明的弱碱性浅黄色液体,罐装即为成品,使用时,将塑封晶体管放入加热容器中,在70~80℃温度下,加热15~30分钟软化溢料,取出塑封晶体管,用水清洗后,毛刷轻擦即可去处溢料。

[0023] 以上所述,实施方式仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明技术的精神的前提下,本领域工程技术人员对本发明的技术方案所作的各种变形和改进,均应落入本发明的权利要求书确定的保护范围内。